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Resumen 

Las enfermedades neurodegenerativas como 

Alzheimer y Parkinson representan un desafío 

en la salud global debido a la complejidad del 

diagnóstico temprano. Este estudio aplica 

minería de datos y machine learning para crear 

modelos predictivos que permitan la 

diferenciación diagnóstica entre ambas 

patologías. Utilizando datasets públicos (ADNI 

para Alzheimer y PPMI para Parkinson), se 

integraron y analizaron variables clínicas, 

demográficas, cognitivas y funcionales 

mediante cinco algoritmos: Decision Trees 

(DT), Random Forest (RF), Gradient Boosting 

Machine (GBM), Support Vector Machines 

(SVM) y Artificial Neural Networks (ANN). El 

pipeline metodológico incluyó 

preprocesamiento con imputación y 

estandarización, selección de características y 

validación cruzada estratificada. Los resultados 

muestran que para Parkinson (PPMI), el 

modelo Gradient Boosting Machine alcanzó 

una precisión del 96.52%, F1-macro de 0.936 y 

AUC de 0.995. Para Alzheimer (ADNI), el 

mismo algoritmo obtuvo una precisión del 

90.29%, F1-macro de 0.900 y AUC de 0.987. 

Se concluye que la integración de datos 

multimodales con técnicas de aprendizaje 

automático permite construir herramientas de 

apoyo clínico no invasivas, objetivas y 

escalables para mejorar el diagnóstico 

temprano y la estratificación de pacientes. 

Palabras clave: Alzheimer, Parkinson, 

Aprendizaje automático, Minería de datos, 

Predicción, Enfermedades 

neurodegenerativas, Diagnóstico 

diferencial, Machine learning. 

Abstract 

Neurodegenerative diseases like Alzheimer's 

and Parkinson's represent a global health 

challenge due to early diagnosis complexity. 

This study applies data mining and machine 

learning to create predictive models for 

diagnostic differentiation between both 

pathologies. Using public datasets (ADNI for 

Alzheimer's and PPMI for Parkinson's), 

clinical, demographic, cognitive and functional 

variables were integrated and analyzed through 

five algorithms: Decision Trees (DT), Random 

Forest (RF), Gradient Boosting Machine 

(GBM), Support Vector Machines (SVM) and 

Artificial Neural Networks (ANN). The 

methodological pipeline included 

preprocessing with imputation and 

standardization, feature selection and stratified 

cross-validation. Results show that for 

Parkinson's (PPMI), the Gradient Boosting 

Machine model achieved 96.52% accuracy, 

0.936 F1-macro and 0.995 AUC. For 

Alzheimer's (ADNI), the same algorithm 

obtained 90.29% accuracy, 0.900 F1-macro 

and 0.987 AUC. The study concludes that 

multimodal data integration with machine 

learning techniques enables building non-
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invasive, objective and scalable clinical 

support tools to improve early diagnosis and 

patient stratification. 

Keywords: Alzheimer, Parkinson, Machine 

learning, Data mining, Prediction, 

Neurodegenerative disorders, Differential 

diagnosis, Artificial intelligence. 

 

Sumário 

As doenças neurodegenerativas como 

Alzheimer e Parkinson representam um desafio 

na saúde global devido à complexidade do 

diagnóstico precoce. Este estudo aplica 

mineração de dados e machine learning para 

criar modelos preditivos que permitam a 

diferenciação diagnóstica entre ambas as 

patologias. Utilizando datasets públicos (ADNI 

para Alzheimer e PPMI para Parkinson), foram 

integradas e analisadas variáveis clínicas, 

demográficas, cognitivas e funcionais 

mediante cinco algoritmos: Decision Trees 

(DT), Random Forest (RF), Gradient Boosting 

Machine (GBM), Support Vector Machines 

(SVM) e Artificial Neural Networks (ANN). O 

pipeline metodológico incluiu pré-

processamento com imputação e padronização, 

seleção de características e validação cruzada 

estratificada. Os resultados mostram que para 

Parkinson (PPMI), o modelo Gradient 

Boosting Machine alcançou uma precisão de 

96.52%, F1-macro de 0.936 e AUC de 0.995. 

Para Alzheimer (ADNI), o mesmo algoritmo 

obteve uma precisão de 90.29%, F1-macro de 

0.900 e AUC de 0.987. Conclui-se que a 

integração de dados multimodais com técnicas 

de aprendizagem automática permite construir 

ferramentas de apoio clínico não invasivas, 

objetivas e escaláveis para melhorar o 

diagnóstico precoce e a estratificação de 

pacientes. 

Palavras-chave: Alzheimer, Parkinson, 

Aprendizagem automática, Mineração de 

dados, Predição, doenças 

Neurodegenerativas, Diagnóstico diferencial, 

Inteligência artificial. 

 

Introducción 

Las enfermedades neurodegenerativas se han 

convertido en un reto prioritario para la salud 

pública y la investigación biomédica, 

impulsado por su aumento sostenido, su curso 

clínico silencioso y el impacto irreversible que 

producen en la vida de los pacientes (World 

Health Organization, 2023; Kavitha et al., 

2022). Entre estas patologías destacan las 

enfermedades de Alzheimer (EA) y Parkinson 

(EP) por su alta prevalencia, su asociación con 

el envejecimiento y el deterioro funcional 

progresivo (World Health Organization, 2023; 

Kavitha et al., 2022; Marek et al., 2018). Se 

estima que a nivel mundial, más de 55 millones 

de individuos viven con demencia, siendo la EA 

la principal causa, y se proyecta que esta cifra 

podría superar los 139 millones para el año 

2050 si no se desarrollan intervenciones 

eficaces (World Health Organization, 2023). La 

EP afecta a aproximadamente 10 millones de 

individuos, constituyéndose como la segunda 

enfermedad neurodegenerativa más frecuente 

(Marek et al., 2018). La Organización Mundial 

de la Salud ha resaltado que los gastos 

asociados al cuidado de personas con demencia 

superan actualmente los 1.3 billones de dólares 

anuales (World Health Organization, 2023). 

Los diagnósticos a menudo ocurren en etapas 

avanzadas cuando las intervenciones tienen 

efectividad limitada, ya que en las etapas 

iniciales hay pocas manifestaciones clínicas 

anormales claramente relacionadas con el inicio 

de la enfermedad (Kavitha et al., 2022; Marek 

et al., 2018). La heterogeneidad en la progresión 

y el número limitado de biomarcadores 

accesibles obstaculizan la detección temprana 

(Tanveer et al., 2020; Zhang et al., 2022; 

Sharma et al., 2023). Diversos estudios han 

evidenciado que las enfermedades 

neurodegenerativas presentan patrones 

fisiopatológicos complejos que dificultan su 

identificación en fases iniciales. En el caso del 

Alzheimer, investigaciones recientes muestran 

que procesos inflamatorios, alteraciones 
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inmunológicas y mecanismos neuropatológicos 

pueden influir en la progresión de la 

enfermedad (Sochocka et al., 2017). En 

Parkinson, estudios basados en análisis multi-

ómicos han demostrado que la integración de 

biomarcadores sanguíneos permite identificar 

genes marcadores con alto potencial 

diagnóstico (Zhang et al., 2022). 

La incorporación de técnicas computacionales 

ha abierto nuevas posibilidades para la 

predicción de progresión neurodegenerativa. 

Modelos basados en minería de datos y series 

temporales han permitido anticipar cambios 

clínicos relevantes mediante la integración de 

factores longitudinales y patrones complejos 

(Tanveer et al., 2020). Revisiones recientes 

señalan una tendencia sostenida hacia el uso de 

enfoques multimodales y aprendizaje profundo 

para mejorar el rendimiento predictivo (Kavitha 

et al., 2022; Marek et al., 2018; Myszczynska et 

al., 2020). Se han propuesto modelos que 

integran múltiples fuentes de información e 

incorporan componentes de interpretabilidad 

(IA explicable) para facilitar su adopción en 

entornos clínicos (Sarica et al., 2017). En la EA, 

la literatura reporta arquitecturas profundas 

orientadas a clasificación y predicción, así 

como enfoques para pronóstico de deterioro 

cognitivo en horizontes longitudinales (Rathore 

et al., 2017; Liu et al., 2018; Grassi et al., 2018; 

Lin et al., 2018). En Parkinson, se han 

explorado estrategias basadas en características 

funcionales como la marcha y aproximaciones 

emergentes para el diagnóstico/predicción 

(Chen et al., 2016; Suarez-Revelo et al., 2021). 

Se han reportado esquemas basados en 

optimización y aprendizaje supervisado 

aplicados al análisis predictivo de trastornos 

neurodegenerativos (Sharma et al., 2023). 

La literatura científica evidencia la necesidad de 

desarrollar modelos predictivos robustos que 

integren datos clínicos, funcionales y 

biomarcadores para diferenciar de forma 

precisa el Alzheimer del Parkinson (Kavitha et 

al., 2022; Liu et al., 2018). Las comparaciones 

entre la EA y la EP se ven limitadas porque los 

estudios se centran en una sola enfermedad, 

dificultando encontrar discrepancias que 

podrían mejorar el diagnóstico temprano (Choi 

et al., 2017). Existe una brecha en el uso de 

datos integrados de múltiples niveles (clínicos, 

cognitivos, biomarcadores y funcionales) en el 

diagnóstico diferencial. Este estudio es 

necesario porque la identificación temprana y la 

diferenciación precisa entre EA y EP siguen 

siendo un desafío cuando los síntomas iniciales 

son sutiles y existe variabilidad clínica entre 

pacientes. La evaluación comparativa usando 

metodologías de minería de datos y aprendizaje 

automático permite avanzar hacia un enfoque 

de medicina de precisión (Kavitha et al., 2022; 

Marek et al., 2018). 

El desarrollo de modelos predictivos no 

invasivos basados en datos clínicos, cognitivos, 

funcionales y biomarcadores puede 

complementar la evaluación médica tradicional, 

ofreciendo resultados más objetivos, 

reproducibles y sensibles a cambios tempranos 

(Tanveer et al., 2020; Sarica et al., 2017). El uso 

de datasets longitudinales consolidados como 

ADNI y PPMI posibilita entrenar y contrastar 

modelos de forma sistemática, fortaleciendo la 

reproducibilidad (Jack et al., 2008; Marek et al., 

2011). El presente estudio propone un modelo 

predictivo basado en minería de datos para 

identificar y comparar patrones clínicos de EA 

y EP mediante la aplicación de algoritmos 

supervisados. Se busca evaluar la capacidad de 

estos modelos para discriminar entre ambas 

patologías utilizando datos clínicos, cognitivos, 

funcionales y demográficos, así como 

determinar qué variables aportan mayor 

relevancia predictiva. 
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Materiales y Métodos 

La metodología general se justificó dentro de un 

enfoque cuantitativo, con alcance comparativo 

y predictivo, y diseño observacional 

retrospectivo. No se justificó la recolección de 

nuevos datos puesto que toda la medición se 

obtuvo de repositorios y fue procesada 

mediante análisis in silico. Se utilizaron dos 

repositorios biomédicos longitudinales: la 

Iniciativa de Neuroimagen de la Enfermedad de 

Alzheimer (ADNI) (Jack et al., 2008) y la 

Iniciativa de Marcadores de Progresión de 

Parkinson (PPMI) (Marek et al., 2011). Ambos 

repositorios proporcionan datos anonimizados 

con protocolos estandarizados para evaluación 

clínica y pruebas neuropsicológicas. El acceso 

se realizó a través de los portales oficiales, en 

cumplimiento con sus políticas de uso 

académico (Jack et al., 2008; Marek et al., 

2011). Como el análisis empleó datos 

secundarios anonimizados, evitó cualquier 

contacto directo con los participantes. 

La conformación de la muestra siguió un 

muestreo no probabilístico de conveniencia, 

condicionado por los registros accesibles en las 

bases de datos. Para eliminar redundancias por 

evaluaciones longitudinales y preservar la 

equivalencia entre participantes, se limitó el 

trabajo a datos iniciales (baseline), manteniendo 

un solo registro por sujeto. En ADNI se tomaron 

instancias con VISCODE = bl y se agrupó por 

RID; en PPMI, se seleccionaron aquellas con 

EVENT_ID = BL y se agrupó por PATNO. Se 

requirió: (i) la existencia de un registro inicial; 

(ii) la presencia de la variable de interés (ADNI: 

DX_bl; PPMI: COHORT); y (iii) la 

disponibilidad de variables predictivas, 

admitiendo valores faltantes imputables. Se 

excluyeron registros con ausencia de etiqueta 

diagnóstica, inconsistencias de identificación, 

duplicidad de registros basales y variables 

incompatibles. 

Para ADNI se utilizaron 12 variables: edad 

(AGE), género (PTGENDER), años de 

educación (PTEDUCAT), Mini-Mental State 

Examination (MMSE), Montreal Cognitive 

Assessment (MOCA), Clinical Dementia 

Rating Sum of Boxes (CDRSB), ADAS-Cog 13 

(ADAS13), Functional Activities Questionnaire 

(FAQ), memoria diferida (LDELTOTAL), β-

amiloide (ABETA), Tau total (TAU), y 

diagnóstico basal (DX_bl) como variable de 

salida con categorías: Normal Cognitivo (CN), 

Deterioro Cognitivo Leve (MCI) y Alzheimer 

(AD). Para PPMI se utilizaron 12 variables: 

edad (AGE), sexo (SEX), años de educación 

(EDUC_YRS), MOCA, Symbol Digit 

Modalities Test (SDMTOTAL), HVLT 

recuerdo inmediato 

(HVLT_IMMEDIATERECALL), prueba 

verbal (VLTANIM), MDS-UPDRS Parte III 

(UPDRS3_SCORE), escala Hoehn y Yahr 

(NHY), Geriatric Depression Scale (GDS), 

alelos APOE ε4 (APOE_E4), uricemia 

(URATE), y cohorte diagnóstica (COHORT) 

como variable de salida con categorías: 

Participante PD, Control Sano, SWEDD y 

Prodromal. 

Se implementó un procedimiento automático 

para estandarizar nombres de columnas, 

eliminando espacios y aplicando normalización 

básica. Se realizó un filtrado inicial 

conservando únicamente variables predictoras y 

la variable objetivo, eliminando registros con 

etiqueta ausente. La etiqueta objetivo se 

transformó mediante Label Encoding para 

habilitar la clasificación multiclase. Para el 

manejo de valores faltantes y normalización, se 

construyó un preprocesador con 

ColumnTransformer: en variables numéricas se 

aplicó imputación por mediana seguida de 

estandarización con StandardScaler, mientras 

que en variables categóricas se utilizó 

imputación por moda y codificación one-hot. 
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Todo el preprocesamiento se integró en un 

pipeline para prevenir fugas de información 

(data leakage). Para cada repositorio se efectuó 

una partición train/test con proporción 80/20, de 

manera estratificada respecto a la variable 

objetivo para preservar la distribución de clases. 

Se fijó semilla (random_state=42) para asegurar 

reproducibilidad. 

Se realizó un análisis comparativo de cinco 

enfoques de clasificación supervisada: Decision 

Trees (DT), Random Forest (RF), Gradient 

Boosting Machine (GBM), Support Vector 

Machines (SVM) y Artificial Neural Networks 

(ANN)[19]. Todos los modelos fueron 

implementados mediante pipelines que integran 

preprocesamiento, manejo del desbalance de 

clases y ajuste de hiperparámetros. Formulación 

Matemática: Sea x_i ∈ R^d el vector de 

variables predictoras de un individuo i, donde d 

corresponde al número de características (d = 12 

en ambos datasets), y sea y_i ∈ {1, ..., K} la 

etiqueta diagnóstica. El objetivo consiste en 

aprender una función de clasificación: 

f:R^d→{1,...,K} 

Decision Trees (DT): Dividen el espacio de 

características mediante reglas de partición 

binarias. Cada nodo interno aplica una 

condición sobre una variable predictora 

utilizando la impureza de Gini como criterio: 

G(t)=1-∑_(k=1)^K▒  p_k (t)^2 

donde G(t) es la impureza del nodo t y p_k(t) es 

la proporción de muestras de clase k en el nodo 

t. 

Random Forest (RF): Construye un ensamble 

de árboles de decisión entrenados sobre 

muestras bootstrap y subconjuntos aleatorios de 

características, agregando sus predicciones 

mediante votación por mayoría. 

Gradient Boosting Machine (GBM): Construye 

un ensamble aditivo de modelos débiles de 

manera secuencial, donde cada nuevo modelo 

corrige los errores del ensamble previo: 

F_M (x)=∑_(m=1)^M▒  νf_m (x) 

donde ν es la tasa de aprendizaje que controla la 

contribución de cada árbol. Support Vector 

Machines (SVM): Busca el hiperplano óptimo 

que maximiza el margen de separación entre 

clases en un espacio de características de alta 

dimensión. Artificial Neural Networks (ANN): 

Perceptrón multicapa con capas ocultas 

completamente conectadas que aplican 

transformaciones afines seguidas de función de 

activación ReLU: 

h^((l))=ϕ(W^((l)) h^((l-1))+b^((l))) 

La capa de salida utiliza función softmax para 

estimar probabilidades de pertenencia a cada 

clase. Se ejecutó RandomizedSearchCV 

definiendo espacios de búsqueda específicos 

para cada modelo, con validación cruzada 

estratificada (k=5) y métrica de optimización 

F1-macro. El modelo con mejor desempeño en 

validación cruzada se seleccionó para 

evaluación final en el conjunto de prueba 

independiente. 

La eficacia de los modelos se evaluó mediante: 

➢ Accuracy: Proporción de predicciones 

correctas 

➢ Balanced Accuracy: Promedio de 

sensibilidades por clase 

➢ F1-macro: Media armónica entre precisión 

y recall promediada por clase 

➢ AUC-ROC OvR: Área bajo la curva ROC 

en esquema one-vs-rest para clasificación 

multiclase 
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Adicionalmente, se calculó la importancia de 

variables mediante feature_importances_ para 

modelos basados en árboles, y mediante 

permutación para SVM y ANN. 

Resultados y Discusión 

Resultados para Parkinson (PPMI) 

Los cinco modelos fueron entrenados y 

evaluados sobre el dataset PPMI. La Tabla 1 

presenta los resultados de desempeño en el 

conjunto de prueba: 

Tabla 1. Resultados de los modelos para el 

dataset PPMI (Parkinson) 

Modelo Accuracy 
Balanced 

Accuracy 

F1-

macro 

AUC-

OvR 

Decision 

Tree 
91.30% 0.837 0.846 0.957 

Random 

Forest 
95.65% 0.899 0.927 0.993 

Gradient 

Boosting 
96.52% 0.906 0.936 0.995 

SVM 93.91% 0.871 0.889 0.982 

ANN 94.78% 0.885 0.908 0.988 

Fuente: Elaboración propia 

El modelo Gradient Boosting Machine 

demostró el mejor rendimiento global, 

alcanzando una precisión del 96.52%, un F1-

macro de 0.936, una precisión equilibrada de 

0.906 y un AUC de 0.995. Random Forest 

obtuvo el segundo mejor desempeño con 

95.65% de precisión. Decision Tree mostró el 

rendimiento más bajo, lo cual es consistente con 

su tendencia al sobreajuste cuando no se limita 

su profundidad. El análisis de importancia de 

variables para GBM reveló que las 

características motoras (UPDRS3_SCORE, 

NHY) y cognitivas (MOCA, SDMTOTAL) 

fueron los predictores más relevantes, seguidos 

de biomarcadores como URATE y factores 

demográficos como edad. A continuación se 

presentan los resultados para Alzheimer.  

Resultados para Alzheimer (ADNI) 

Los cinco modelos fueron entrenados y 

evaluados sobre el dataset ADNI. La Tabla 2 

presenta los resultados: 

Tabla 2. Resultados de los modelos para el 

dataset ADNI (Alzheimer) 

Modelo Accuracy 
Balanced 

Accuracy 

F1-

macro 

AUC-

OvR 

Decision 

Tree 
84.47% 0.823 0.831 0.941 

Random 

Forest 
88.35% 0.894 0.887 0.981 

Gradient 

Boosting 
90.29% 0.911 0.900 0.987 

SVM 87.38% 0.878 0.875 0.972 

ANN 86.89% 0.867 0.869 0.976 

Fuente: Elaboración propia 

Gradient Boosting Machine nuevamente 

demostró el mejor rendimiento, con una 

precisión del 90.29%, F1-macro de 0.900, 

precisión equilibrada de 0.911 y AUC de 0.987. 

Random Forest obtuvo el segundo lugar con 

88.35% de precisión. El análisis de importancia 

reveló que las variables cognitivas (MMSE, 

MOCA, CDRSB, ADAS13) y de memoria 

(LDELTOTAL) fueron los predictores más 

relevantes, seguidos de biomarcadores (TAU, 

ABETA) y el cuestionario funcional (FAQ). 

Las variables demográficas mostraron menor 

importancia relativa. 

Los resultados obtenidos demuestran que los 

modelos de ensamble, particularmente Gradient 

Boosting Machine, superan consistentemente a 

modelos individuales en ambos datasets. Este 

hallazgo es coherente con la literatura reciente 

que reporta la superioridad de métodos de 

ensamble en problemas de clasificación médica 

(Bhattacharya et al., 2021; Breiman, 2001; 

Chen & Guestrin, 2016). La mayor precisión 

observada en el dataset PPMI (96.52%) 

comparada con ADNI (90.29%) puede 

atribuirse a varios factores: (i) la EP presenta 

manifestaciones motoras más objetivamente 
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medibles (UPDRS3_SCORE, NHY) que 

facilitan la discriminación diagnóstica; (ii) la 

EA muestra mayor heterogeneidad clínica, 

especialmente en la categoría MCI que puede 

incluir subtipos variados; (iii) el solapamiento 

sintomático entre CN y MCI temprano es más 

sutil que entre controles y PD. 

La importancia de variables motoras en 

Parkinson coincide con estudios previos que 

identifican UPDRS como predictor robusto 

(Chen et al., 2016; Suarez-Revelo et al., 2021). 

Para Alzheimer, la relevancia de variables 

cognitivas (MMSE, MOCA) y de memoria 

valida el rol central del deterioro cognitivo en la 

progresión de la EA (Rathore et al., 2017; Liu 

et al., 2018; Grassi et al., 2018; Lin et al., 2018). 

Los biomarcadores (TAU, ABETA) mostraron 

importancia significativa pero no dominante, 

sugiriendo que la integración multimodal aporta 

mayor valor que biomarcadores aislados (Zhang 

et al., 2022; Sochocka et al., 2017). Los valores 

de AUC superiores a 0.98 en ambos datasets 

indican excelente capacidad discriminativa de 

los modelos, comparable con estudios recientes 

que utilizan aprendizaje profundo (Kavitha et 

al., 2022; Marek et al., 2018; Myszczynska et 

al., 2020). Sin embargo, los modelos propuestos 

ofrecen ventajas de interpretabilidad mediante 

análisis de importancia de variables, facilitando 

la comprensión clínica de las decisiones 

predictivas (Sarica et al., 2017). Las métricas de 

balanced accuracy y F1-macro superiores a 0.90 

demuestran robustez ante desbalance de clases, 

aspecto crítico en datos clínicos donde las 

categorías diagnósticas pueden tener 

prevalencias dispares. 

Conclusiones 

Este estudio desarrolló y evaluó modelos 

predictivos basados en minería de datos para el 

diagnóstico diferencial de Alzheimer y 

Parkinson, demostrando que la integración de 

datos clínicos, cognitivos, funcionales y 

biomarcadores mediante algoritmos de machine 

learning permite alcanzar alta precisión 

diagnóstica. Las principales conclusiones son: 

➢ Gradient Boosting Machine demostró el 

mejor rendimiento en ambos datasets, 

alcanzando 96.52% de precisión para 

Parkinson (PPMI) y 90.29% para 

Alzheimer (ADNI), superando 

consistentemente a otros algoritmos 

evaluados. 

➢ Los modelos de ensamble (Random Forest, 

Gradient Boosting) superaron a modelos 

individuales (Decision Tree, SVM, ANN), 

confirmando el valor de combinar 

múltiples predictores débiles para 

problemas complejos de clasificación 

médica. 

➢ Las variables más relevantes difieren entre 

patologías: en Parkinson dominan 

características motoras 

(UPDRS3_SCORE, NHY) y cognitivas 

(MOCA), mientras que en Alzheimer 

destacan pruebas cognitivas (MMSE, 

MOCA, CDRSB) y de memoria 

(LDELTOTAL). 

➢ La integración multimodal de datos 

demográficos, clínicos, cognitivos, 

funcionales y biomarcadores aporta mayor 

valor predictivo que el uso de variables 

aisladas, validando el enfoque de medicina 

de precisión. 

➢ Los modelos desarrollados pueden servir 

como herramientas de apoyo clínico no 

invasivas, objetivas y escalables para 

mejorar el diagnóstico temprano, la 

estratificación de pacientes y el 

seguimiento longitudinal en entornos 

asistenciales. 

➢ La metodología propuesta es reproducible 

y aplicable a otros trastornos 

neurodegenerativos, permitiendo extender 
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el enfoque a nuevas patologías conforme se 

dispongan de datos estructurados. 
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