
Ciencia y Educación
(L-ISSN: 2790-8402 E-ISSN: 2707-3378)
Vol. 7 No. 1.1
Edición Especial I 2026
Página 924
el enfoque a nuevas patologías conforme se
dispongan de datos estructurados.
Agradecimientos
Los autores agradecen a las iniciativas ADNI y
PPMI por proporcionar acceso a sus bases de
datos longitudinales, así como a todas las
instituciones participantes y pacientes que
contribuyeron a estos repositorios. Este trabajo
fue posible gracias al apoyo de [institución
financiadora] bajo el proyecto [número].
Referencias Bibliográficas
Bhattacharya, S., Salil, P., Ranjan, P., y Goel, S.
(2021). Deep learning and medical image
processing for early detection of Alzheimer's
disease. Neural Computing and
Applications, 33(21), 14249–14262.
Breiman, L. (2001). Random forests. Machine
Learning, 45(1), 5–32.
Chen, H., Wang, G., Ma, C., Cai, Z., Liu, W., y
Wang, S. (2016). An efficient hybrid kernel
extreme learning machine approach for early
diagnosis of Parkinson's disease.
Neurocomputing, 184, 131–144.
Chen, T., y Guestrin, C. (2016). XGBoost: A
scalable tree boosting system. In
Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge
Discovery and Data Mining (pp. 785–794).
Choi, H., Ha, S., Im, H., Paek, S., y Lee, D.
(2017). Refining diagnosis of Parkinson's
disease with deep learning-based
interpretation of dopamine transporter
imaging. NeuroImage: Clinical, 16, 586–
594.
Grassi, M., Perna, G., Caldirola, D., Schruers,
K., Duara, R., y Loewenstein, D. (2018). A
clinically-translatable machine learning
algorithm for the prediction of Alzheimer's
disease conversion in individuals with mild
and premild cognitive impairment. Journal
of Alzheimer's Disease, 61(4), 1555–1573.
Jack, C., Bernstein, M., Fox, N., Thompson, P.,
Alexander, G., y Harvey, D. (2008). The
Alzheimer's disease neuroimaging initiative
(ADNI): MRI methods. Journal of Magnetic
Resonance Imaging, 27(4), 685–691.
Kavitha, C., Mani, V., Srividhya, S., Khalaf, O.,
y Tavera, C. (2022). Early-stage Alzheimer's
disease prediction using machine learning
models. Frontiers in Public Health, 10,
853294.
Lin, W., Tong, T., Gao, Q., Guo, D., Du, X., y
Yang, Y. (2018). Convolutional neural
networks-based MRI image analysis for the
Alzheimer's disease prediction from mild
cognitive impairment. Frontiers in
Neuroscience, 12, 777.
Liu, M., Zhang, J., Adeli, E., y Shen, D. (2018).
Landmark-based deep multi-instance
learning for brain disease diagnosis. Medical
Image Analysis, 43, 157–168.
Marek, K., Chowdhury, S., Siderowf, A.,
Lasch, S., y Coffey, C. (2018). The
Parkinson's progression markers initiative
(PPMI): Establishing a PD biomarker cohort.
Annals of Clinical and Translational
Neurology, 5(12), 1460–1477.
Marek, K., Jennings, D., Lasch, S., Siderowf,
A., Tanner, C., y Simuni, T. (2011). The
Parkinson progression marker initiative
(PPMI). Progress in Neurobiology, 95(4),
629–635.
Myszczynska, M., Ojamies, P., Lacoste, A.,
Neil, D., Saffari, A., y Mead, R. (2020).
Applications of machine learning to
diagnosis and treatment of
neurodegenerative diseases. Nature Reviews
Neurology, 16(8), 440–456.
Rathore, S., Habes, M., Iftikhar, M., Shacklett,
A., y Davatzikos, C. (2017). A review on
neuroimaging-based classification studies
and associated feature extraction methods
for Alzheimer's disease and its prodromal
stages. NeuroImage, 155, 530–548.
Sarica, A., Cerasa, A., y Quattrone, A. (2017).
Random forest algorithm for the
classification of neuroimaging data in
Alzheimer's disease: A systematic review.
Frontiers in Aging Neuroscience, 9, 329.
Sharma, N., Kolekar, M., y Jha, K. (2023).
Alzheimer's disease prediction using
machine learning and deep learning: A
comprehensive review. Electronics, 12(7),
1723.